Les théorèmes de Hohenberg-Kohn

Besoin d'aide ?

(Nombre de téléchargements - 7)

Catégorie :

Pour des questions et des demandes, contactez notre service d’assistance E-mail : [email protected]

Table des matières

Introduction générale
1 Méthodes de modélisation
1.1 Introduction
1.1.1 Équation de Schrödinger des états stationnaires
1.1.2 Approximation de Born-Oppenheimer
1.2 Théorie de la fonctionnelle de la densité
1.2.1 Les théorèmes de Hohenberg-Kohn
1.2.2 Équations de Kohn-Sham
1.2.3 Approximations sur la fonctionnelle d’échange et corrélation
1.2.4 Application de la théorie de la fonctionnelle de la densité au cas des solides cristallins
1.2.5 Approximation des pseudo-potentiels
1.2.6 Résolution itérative des équations de Kohn-Sham
1.2.7 Optimisation de la position des noyaux
1.3 Phonons et spectroscopie vibrationnelle
1.3.1 Décomposition en modes propres
1.3.2 Modes propres de vibration dans un cristal
1.3.3 Calculs de spectres infrarouge et Raman
1.4 Dynamique moléculaire : approche empirique et ab initio
1.4.1 Ensembles thermodynamiques et thermostats
1.4.2 Dynamique moléculaire classique
1.4.3 Dynamique moléculaire ab initio
1.5 Prédiction de structures cristallines
1.5.1 Introduction au problème de la prédiction
1.5.2 Principe général de la méthode AIRSS
1.5.3 Exemple d’application dans NH4F
1.6 Propriétés structurales et dynamiques
1.6.1 Liaison hydrogène
1.6.2 Notions élémentaires sur les transitions de phase
1.6.3 Fonction de distribution radiale
1.6.4 Densité spectrale vibrationnelle
1.7 Dispositifs expérimentaux et techniques d’analyse
1.7.1 Principe général de la cellule à enclumes de diamant
1.7.2 Techniques d’analyse structurales et vibrationnelles
2 Désordre protonique et transition ordre-désordre de NH4F
2.1 Le cristal ionique NH4F : un système peu étudié
2.1.1 Diagramme de phases
2.1.2 NH4F/H2O : une possible similarité structurale
2.2 Paramètres des calculs et techniques expérimentales
2.2.1 Paramètres des calculs
2.2.2 Études expérimentales
2.3 Prédiction de structures
2.3.1 Résultats
2.3.2 Effet des fonctionnelles d’échange et corrélation sur la stabilité thermodynamique
2.4 Mise en évidence du désordre au sein de la phase III
2.5 Étude des modes de vibration par spectroscopie Raman
2.6 Transition ordre (NH4F V) – désordre (NH4F III)
2.6.1 Étude par la spectroscopie Raman
2.6.2 Simulations de diffractogrammes des rayons X
2.7 Stabilité thermodynamique
2.8 Prédiction à très haute pression : une analogie NH4F/H2O conservée
2.9 Discussion
2.10 Conclusions et perspectives
3 Propriétés exotiques du mélange NH3.H2O sous pression
3.1 Introduction
3.1.1 Planétologie des glaces moléculaires
3.1.2 Les glaces denses d’eau, ammoniac et méthane : état de l’art
3.1.3 Diagramme de phases de l’AMH
3.2 Paramètres des simulations et méthodes expérimentales
3.2.1 Paramètres des simulations
3.2.2 Techniques expérimentales
3.3 Prédiction de structures
3.3.1 Résultats
3.3.2 Effet des fonctionnelles d’échange et corrélation sur la stabilité thermodynamique
3.3.3 La structure P4/nmm : un cristal équivalent à une phase VI ionique ?
3.4 Études vibrationnelles et structurales
3.4.1 Preuve de l’ionisation à basse pression
3.4.2 Désordre substitutionnel et orientationnel
3.5 AMH VI0 : un cristal ionique, moléculaire et désordonné
3.5.1 Démarche et paramètres des simulations
3.5.2 Coexistence entre espèces moléculaires et ioniques
3.5.3 Analyse topologique : un système frustré
3.5.4 Densités d’états vibrationnels
3.6 Discussion
3.7 Conclusions et perspectives
Conclusion générale

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Comments (1)